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Electronic Cigarette Smoke Impairs 
Normal Mesenchymal Stem Cell 
Differentiation
A. Shaito   1, J. Saliba2, A. Husari3, M. El-Harakeh4, H. Chhouri4, Y. Hashem3, A. Shihadeh   5 & 
M. El-Sabban4

Electronic cigarettes (e-cigarettes) are promoted as low-risk alternatives to combustible cigarettes. 
However, the effects of chronic inhalation of potential toxicants emitted by ecigarettes remain largely 
unexamined. It is conceivable that smoking-induced chronic diseases result in cellular injury, in the 
absence of effective repair by stem cells. This study evaluates the effect of cigarette and e-cigarette 
aerosol extracts on the survival and differentiation of bone marrow-derived mesenchymal stem cells 
(MSCs). MSC growth and osteogenic differentiation were examined after exposure to smoke extracts. 
Data revealed detrimental effects of both cigarette and e-cigarette extracts on MSC morphology and 
growth. Levels and activity of alkaline phosphatase, an osteogenic marker, decreased and induction of 
osteoblastic differentiation was impaired. Both smoke extracts prevented osteogenic differentiation 
from progressing, evident by decreased expression of terminal osteogenic markers and mineralization. 
Elevated levels of reactive oxygen species (ROS) were detected in cells exposed to smoke extracts. 
Moreover, decreased differentiation potential was concomitant with severe down-regulation of 
Connexin 43 expression, leading to the loss of gap junction-mediated communication, which together 
with elevated ROS levels, could explain decreased proliferation and loss of differentiation potential. 
Hence, e-cigarettes present similar risk as combustible cigarettes with respect to tissue repair 
impairment.

The detrimental impact of cigarette smoking on health is amply documented and ranges from oral diseases1, to 
systemic malfunction, inflammation2, infertility3,4, cancer and abnormal cell differentiation and tissue repair1. 
Awareness has been raised among smokers and policy-makers, and has resulted in proactive measures aiming 
at curbing cigarette smoking. Controversially, waterpipe smoking is gaining popularity worldwide, alongside 
another globally spreading phenomenon, the use of electronic cigarette (e-cigarette) or “vaping”5.

E-cigarettes are often claimed to be a safer alternative to conventional tobacco products and are sometimes 
marketed as a smoking cessation tool. Some research has suggested a decrease in the disease burden of e-cigarette 
vaping, compared to combustible cigarette smoking6. However, e-cigarette liquids have been reported to be 
cytotoxic7,8, and e-cigarette aerosol emissions have been shown to exert negative effects in animal models9–14. 
Nevertheless, partly due to the recent emergence of the e-cigarette, there is a lack of information on its long-term 
effects on health and studies on e-cigarette safety are not yet conclusive. Combustible cigarette smoke compro-
mises cell growth and tissue repair1,15,16; however, the impact of e-cigarette aerosols on cell differentiation and 
tissue repair has not been studied.

A stable epithelial layer with a relatively slow cell turnover rate lines the respiratory tract17. Upon injury, 
progenitor and stem cells are recruited to repair damaged tissues. However, smokers develop chronic conditions, 
from long-term exposure to smoke, suggesting impaired tissue healing and remodelling. Previously, we explored 
the effect of waterpipe smoke on alveolar type II-derived cells18 and on endothelial cells19, detailing cytotoxic, 
mutagenic, inflammatory and anti-proliferative effects. The onset of systemic inflammation and the compromised 

1Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, 
Beirut, Lebanon. 2Department of Biology, Faculty of Science, Lebanese University, Beirut, Lebanon. 3Department of 
Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. 4Department of Anatomy, 
Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. 
5Department of Mechanical Engineering, Faculty of Engineering, American University of Beirut, Beirut, Lebanon. A. 
Shaito and J. Saliba contributed equally to this work. Correspondence and requests for materials should be addressed 
to M.E.-S. (email: me00@aub.edu.lb)

Received: 28 June 2017

Accepted: 5 October 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-3524-7962
http://orcid.org/0000-0001-6387-8564
mailto:me00@aub.edu.lb


www.nature.com/scientificreports/

2SCIEntIFIC REportS | 7: 14281  | DOI:10.1038/s41598-017-14634-z

ability of local cells to heal the damaged tissues were proposed as a plausible mechanism underlying tobacco 
smoke-induced diseases such as chronic obstructive pulmonary disease (COPD) and vascular diseases18,19. These 
conditions remain with no cure and a rather modest clinical management20,21.

Stem cells are at the core of tissue repair and remodelling. Bone marrow-derived mesenchymal stem cells 
(MSCs) are frequently recruited to the site of injury22 and are extensively studied for the treatment and repair 
of tissues such as in cardiac injury23,24. Among the documented hazards associated with smoking, generation of 
reactive oxygen species (ROS) and alteration of gap junctional complexes are tightly associated with modulation 
of repair mechanisms. Indeed, multiple studies have highlighted the importance of gap junctions in protecting 
cells against oxidative stress-induced cell death25 and in modulation of cell proliferation and survival25,26, tum-
origenesis27, and differentiation28,29. Nicotine was shown to down-regulate the expression levels of Connexin 43 
(Cx43) in human endothelial cells30,31, which affects viability, proliferation, and angiogenesis32. In addition, low 
Cx43 expression is strongly associated with the metastatic phenotype of cancer cells33,34, while up-regulation of 
Cx43 expression restores the sensitivity of lung carcinoma cells to chemotherapy in vitro35. Cx43 is reported to be 
highly expressed in MSCs36. MSCs undergoing osteoblastic differentiation express Cx43; Cx43 plays a major role 
in osteoblast progenitor migration and homing to bone in vivo28,37–39.

The present study investigates the effect of combustible cigarette and e-cigarette smoke extracts on the ability 
of stem cells to differentiate, as impairment of stem cell differentiation leads to tissue repair impairment, causing 
chronic diseases.

Results
Smoke extracts inhibit MSC proliferation and induces morphological changes.  The concentra-
tion of smoke extract to be used throughout the study was determined by exposing MSCs to increasing concen-
trations of smoke extracts. Media were replenished every third day over 12 days. Treated MSCs showed poor 
viability at concentrations higher than 0.6 mg/ml and 6 mg/ml for cigarette and e-cigarette extracts, respectively. 
At higher concentrations, cells stopped proliferating, acquired spindle-like morphology with long processes and, 
eventually, sloughed off. Therefore, for the aims of this study, the concentrations of 0.4 mg/ml and 4 mg/ml were 
chosen for the cigarette and e-cigarette sets, respectively, applied every third day, for 3 weeks. We note that the 
tenfold difference in concentration between e-cigarette and cigarette extracts is consistent with the approximately 
tenfold greater amount of aerosol particulate matter inhaled by an e-cigarette user for the same nicotine delivery. 
By day 21 of the experiment, in response to repeated exposure, cells underwent morphological alterations that 
were more pronounced in the cigarette- than in e-cigarette samples (Fig. 1a). At high magnification, micro-
scopic images of MSCs treated with smoke extracts display altered morphology with variable response to the 
insult ranging from mild changes to severe shrinkage and collapsing of cytoplasm. Morphological alteration were 
observed, albeit to a lesser extent, in cells treated with e-cigarette smoke extracts with overall smaller cells, com-
pared to control MSCs (Fig. 1a; lower panel). Trypan blue exclusion assay showed an 80% (p < 0.005) and 50% 
(p < 0.01) decrease in the number of cigarette- and e-cigarette-treated cells, respectively (Fig. 1b). The extent of 
cell death was also measured in cigarette- and e-cigarette-treated wells, where the number of dead cells was three-
fold higher in both groups, as compared to control. This trend in cell viability was paralleled and confirmed by a 
comparable decrease in the metabolic activity of the cells. Indeed, the MTT assay showed a 50% (p < 0.001) and 
30% (p < 0.005) decrease in the metabolic activity of cigarette- and e-cigarette-treated cells, respectively (Fig. 1c). 
These data indicate that both cigarette and e-cigarette particles compromise MSCs proliferation.

Smoke extracts impair MSCs differentiation.  The potential of MSCs to differentiate was evaluated by 
inducing osteoblastic differentiation using 50 nM Dex. The effect of repeated exposure to smoke extract on the 
induction of MSCs differentiation, as monitored by the expression of different osteogenic differentiation mark-
ers, ALP, Col 1, and Runx2 was assessed. Dex induced ALP activity (Fig. 2a) and ALP gene expression in MSCs 
(Fig. 2b). Both cigarette and e-cigarette reduced basal ALP activity (Fig. 2a). Only cigarette smoke extracts sig-
nificantly decreased ALP mRNA levels upon treatment with Dex (p < 0.0001) (Fig. 2b). Given the role of ALP as 
an early osteogenic marker and that Dex drives MSCs to early osteogenic differentiation, these data indicate that 
early osteogenic differentiation is less affected by e-cigarette than by cigarette smoke extracts. In addition, the 
expression of Col 1 and Runx2 decreased in smoke extracts and Dex-treated MSCs (p < 0.01) (Fig. 2b). Only Col 
1 mRNA levels decreased significantly upon e-cigarette smoke extract treatment (p < 0.05).

DAG treatment drives MSCs beyond the early differentiation induced by Dex alone. DAG induces extensive 
morphology change in MSCs, which became rounded with deposits visible in the background; however, smoke 
impeded DAG-induced morphological changes (Fig. 3a). Alizarin Red S staining confirmed osteogenic differ-
entiation in DAG-treated cells that showed dense red-orange patches, attesting to mineralization (Fig. 3b). A 
much less pronounced Alizarin Red S staining was observed in smoke-treated MSCs. This suggests that not only 
cigarette, but also e-cigarette smoke extracts largely impair the progress of differentiation beyond ALP expression.

E-cigarette smoke extracts lead to overproduction of ROS.  The impaired differentiation of MSCs 
upon cigarette and e-cigarette challenge could be due to several factors. ROS are important upstream osteogenic 
differentiation mediators in MSCs. ROS levels were visualized in control and smoke-exposed MSCs to deter-
mine whether e-cigarette extracts induce ROS generation and whether high levels of ROS may be involved in 
hindering osteogenesis. Figure 4a shows that MSCs exhibit high levels of ROS in response to smoke extract, as 
compared to control. Control cells had a mean fluorescence intensity (MFI) of 126 ± 1.4, while cigarette-treated 
cells had MFI of 170 ± 38.2 (Fig. 4b) and ROS levels were highest in e-cigarette-treated MSCs (MFI = 218 ± 16.2). 
Furthermore, differentiated cells exhibited low levels of ROS (Fig. 4a, left lower panel), with MFI = 76 ± 15.5, 
while smoke-exposed cells also treated with Dex maintained elevated ROS levels, which could, in part, explain 
smoke-induced inhibition of osteogenic differentiation.
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Cigarette and e-cigarette smoke extracts inhibit cell-cell communication.  In order to further 
explore the mechanisms behind MSCs growth and differentiation impairment, the integrity of cell-cell com-
munication was assessed upon exposure to smoke extracts. Figure 5a shows a marked decrease in Cx43 mRNA 
levels. Western blot and immunofluorescence (Fig. 5b,c) show a sharp downregulation of Cx43 protein levels 
in both cigarette- and e-cigarette-treated cells. N-cadherin, a component of junctional complexes involved in 
cell-cell contact, was also examined and its expression was maintained both at the mRNA and protein levels 
(Fig. 5a,b). This suggests that the integrity of the cell layer is preserved and that downregulation of Cx43 is a 
specific effect of smoke exposure and not secondary to the disruption of cell membrane integrity and cell-cell 
contact. Downregulation of Cx43 was further investigated at the functional level. FRAP studies show that 
smoke-treated cells do not recover fluorescence after photo-bleaching to at least 50% of their initial fluorescence 
intensity (Fig. 5d,e). The background fluorescence intensity is maintained throughout the experimental duration 
(black curve, Fig. 5e). Cigarette- and e-cigarette-challenged cells did not recover fluorescence, compared to a 
30-40% recovery in control cells (blue curve). Indeed, fluorescence recovery between minute 1 and minute 10 was 
not significant in the cigarette (p = 0.32) or in the e-cigarette (p = 0.52) treated cells, while in the untreated cells, 
fluorescence recovery was significant at 10 minutes (p < 0.005). Similarly, at the end of recovery period (10 min-
utes), fluorescence difference between treated and control cells was significant (p < 0.05), while the difference of 
fluorescence intensity between cigarette and e-cigarette treated cells was not significant (p = 0.25). Both cigarette 
and e-cigarette smoke extracts compromised gap junction-mediated intercellular communication.

Figure 1.  Cigarette and e-cigarette smoke extracts alter MSC morphology and growth. MSCs were repeatedly 
(once every 3 days) exposed to cigarette and e-cigarette smoke extracts for 21 days. (a) MSC morphology 
was examined by light microscopy (upper panel). High magnification DIC images are shown in the lower 
panel. (b) On day 21, cell viability was assessed using the trypan blue dye exclusion assay. Histograms display 
averages ± SD of 3 independent experiments in duplicates. (c) On day 21, the metabolic activity of MSCs was 
assessed by MTT. Histograms display averages ± SD of 2 independent experiments in triplicates. *p < 0.01, 
**p < 0.005 and ***p < 0.001.
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Discussion
Currently, there is no consensus on the use of e-cigarettes as nicotine surrogates or as smoking cessation tools and 
the concept remains controversial due to the relatively recent emergence of “vaping” trends40 and a paucity of data 
on its net health effects in the population. Understandably, much attention to date has focused on e-cigarette aero-
sol toxicant content41–51, and particularly those toxicants thought to be causative agents in cigarette smoke-related 
disease – the so-called Hoffmann analytes52. E-cigarette proponents have pointed out that under most conditions, 
e-cigarettes emit fewer and less Hoffmann analytes than do combustible cigarettes. While toxicant analysis is a 
powerful tool for studying the potential risk of product exposure, it is not generally known a priori which tox-
icants to scan; indeed, due to their different sources, e-cigarette aerosol toxicity may be due to constituents not 
included in the Hoffmann list. Recent literature on the effects of e-cigarette on animals and cells10–14,50,53,54 sug-
gests that the relatively low amounts of Hoffmann analytes in e-cigarette aerosols may not provide an adequate 
picture of the possible effects of long-term use. This study is one of the earliest works that examined the poten-
tial effects of e-cigarette aerosol extracts on human stem cells, suggesting that e-cigarette smoke particles may 
adversely impact human health.

The role of stem cells and their capability to differentiate and repair organs damaged by smoking is crucial 
in diseases associated with tobacco use like COPD. This study compared the effect of exposure to combustible 
cigarette and e-cigarette smoke extracts on the survival of stem cells and their differentiation potential. As a proof 
of concept, and due to the relative ease of induction and assessment of differentiation in MSCs, the difficulty in 
obtaining organ-specific stem cells, and the fact that MSCs are recruited to sites of injury for tissue repair, the 
well-established model of MSC differentiation into osteoblast-like cells was used to assess the effects of smoke 
extracts on the differentiation potential of MSCs. Our results demonstrated that both cigarette and e-cigarette 
smoke extracts significantly affect the proliferation of MSCs. This finding was in agreement with a previous study 
that demonstrated the attenuation of A549 alveolar cellular growth secondary to cigarette exposure9. This loss of 
proliferative potential was accompanied by morphological changes, also indicative of alterations in cell behaviour. 
Addition of Dex to induce MSCs into osteoblastic differentiation did not salvage the cells and failed to induce 
MSC differentiation in the cigarette-treated samples. E-cigarette-treated MSCs, however, seemed to retain dif-
ferentiation potential in the presence of Dex, though to a lesser extent than control cells. However, attempts to 
progress MSC differentiation by the addition of DAG failed in the treated cells. Exposure to either cigarette or 
e-cigarette smoke extracts compromised response of MSCs to DAG, as evidenced by the absence of differentiation 
features (mineralization and calcium deposition).

MSC differentiation potential is modulated by the type and level of ROS55–57; indeed, MSC osteogenesis occurs 
under low ROS levels58–60. Cigarette smoke contains high concentration of ROS-inducing agents61, which are 

Figure 2.  Cigarette and e-cigarette smoke extracts attenuate MSC differentiation. (a) MSCs were induced 
into osteogenic differentiation by treatment with 50 nM Dex for 14 days. ALP activity was then assessed 
using a chromogenic ALP assay where purple staining indicates ALP activity. The light microscopy images 
are representative of 3 independent experiments. (b) MSCs were simultaneously treated with 50 nM Dex for 
osteogenic differentiation and cigarette or e-cigarette smoke extracts for 14 days. Expression of osteogenic 
markers (alkaline phosphatase [ALP], collagen 1 [Col 1] and Runt-related transcription factor 2 [Runx2]) was 
then assessed using qRT-PCR. Histograms display data normalized against GAPDH and show fold changes 
relative to control. Results are displayed as averages ± SD of 3 independent experiments. *p < 0.05, **p < 0.01 
and ***p < 0.001.
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known to decrease the differentiation potential of MSCs into osteoblasts62. MSCs exposed to both cigarette and 
e-cigarette smoke extracts generated high levels of ROS, as defined by increased superoxide radical levels54,63,64, 
which can explain attenuated differentiation of smoke-exposed cells65.

Gap junction-mediated intercellular communication is pivotal to the regulation of several cellular pro-
cesses including proliferation, differentiation, apoptosis and tumorigenesis66. Cx43 is the main connexin in 
bone marrow-derived MSCs36 and appears to be directly involved in osteogenic differentiation. Our data sug-
gest that the loss of Cx43, upon exposure to cigarette and e-cigarette smoke extracts, and the subsequent loss of 
cell-cell communication, is associated with the decrease in the differentiation potential and hence the attenuated 
potential of MSCs to undergo osteogenic differentiation. Cx43 also protects cells from oxidative stress25, and 
the down-regulation of Cx43 can explain impaired growth and differentiation of MSCs upon exposure to the 
combination of smoke and Dex. This observation may suggest that e-cigarette can be a risk factor for osteo-
porosis, a chronic condition tightly linked to cigarette smoking67 and comorbidity with COPD68. Our results 
suggest that smoke extracts might be inhibiting the cytoplasmic exchange of survival and differentiation signals, 
by down-regulating Cx43 expression in MSCs. In addition to the fact that nicotine might be a player in the 
impairment of differentiation69, smoke contains other ingredients that are toxic and could impair differentiation 
as well70,71. Subsequently, tissue repair might be compromised upon exposure to both cigarette and e-cigarette.

Therefore, while e-cigarette aerosols are commonly understood to contain fewer and less of the toxicants that 
have been linked to diseases in combustible cigarette smokers, this study adds to the growing evidence that sug-
gests that a cautionary approach to e-cigarette proliferation is necessary.

Material and Methods
Smoke extract preparation.  Combustible and electronic cigarette aerosols were generated using the 
Oro-nasal Respiratory Exposure System (ONARES, CH Technologies, USA), as previously described9. Briefly, 
combustible cigarette particulate matter was generated from reference 3R4F cigarettes (University of Kentucky, 
Lexington, KY) with 9.4 mg tar, and 0.726 mg nicotine per cigarette, following a puffing protocol of one 2-second 
puff every minute and a volume of 35 ml/puff (ISO standard). E-cigarette particulate matter was obtained from 
pre-filled V4L CoolCart (strawberry flavor, 3.5 Ohm, 18 mg/ml labelled nicotine concentration) cartomizer car-
tridges; by 4-second puff duration, 1.2 l/minute flow rate, and 14-second inter-puff interval72.

Aerosol particles were trapped onto 47-mm glass fiber filter disks type A/E (Pall Laboratory, USA) and then 
extracted in cell culture medium using a syringe and sterilized through a 0.22-μm filter (Costar, Corning Inc., 
New York, USA), to the final concentrations to be applied onto cells.

Figure 3.  Cigarette and e-cigarette smoke extracts block progress towards terminal osteogenic differentiation. 
MSCs were treated with cigarette and e-cigarette smoke extracts in the presence or absence of DAG for 21 days. 
(a) Cell morphology was observed under the light microscope. Mineral deposition in the plates is evident as 
black spots. (b) MSCs were stained with Alizarin Red S stain and observed under the light microscope. Orange 
staining indicates mineralized calcium deposits. Images are representative of 3 independent experiments.
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Cells and cell culture.  Bone marrow-derived mesenchymal stem cells (MSCs), isolated from healthy volun-
teers, were purchased from Lonza (Cologne, Germany). These MSCs retain the ability to self-renew and differen-
tiate into multiple mesodermal lineages (osteogenic, adipogenic, chondrogenic and bone marrow stroma). MSCs 
were cultured in complete Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with glucose (1 g/l), fetal 
bovine serum (10%) and penicillin/streptomycin (100 units of potassium penicillin and 100 µg of streptomycin 
sulphate per 1 ml of DMEM).

Smoke extracts were freshly prepared prior to addition to cells. Ascending concentrations of combustible and 
e-cigarette total smoke extracts were applied onto the cells for 2 weeks. Cells were monitored daily by microscopy 
to determine the concentration to be used to enable cellular and molecular observations.

Dexamethasone (Dex) (DEXAMED, Medochemie, Limassol, Cyprus) was used at a concentration of 50 nM to 
induce osteogenic differentiation73,74, added onto the cells either alone or simultaneously with the smoke extract. 
To further differentiate MSCs into osteoblast-like cells, an osteogenic differentiation combination was used 
(50 nM Dex, 50 μM ascorbic acid and 10 mM beta-glycerophosphate, abbreviated as DAG).

MSCs were plated at a density of 7,000 cells/cm2. Smoke extract exposure and differentiation started when 
cells reached 70% confluence; treatment was applied every third day, for a total of 14 or 21 days.

Morphological and histochemical assessment.  MSCs were seeded onto 6-well plates (Corning, New 
York, USA) and treated with smoke extracts +/− Dex (14 days) or +/−DAG (21 days).

Morphological changes.  Cells were monitored daily by light microscopy and images were captured to doc-
ument changes in cell confluence and morphology.

Cell viability.  Cell growth was assessed using the trypan blue exclusion assay. Control and treated cells were 
plated in duplicates in 24-well plates. At pre-determined time points, MSCs were released from the plate using 
0.05% Trypsin-EDTA (R-001-100, Life Technologies, California, USA), then equal volumes of cells and trypan 
blue dye and counted using a haemocytometer.

In parallel, the MTT assay was performed to evaluate the metabolic activity of MSCs. Control and treated 
cells were seeded in duplicates onto flat-bottom 96-well plates. At each time point, cells in 90 µl media were incu-
bated with 10 µl of a 5 mg/ml MTT substrate solution, thiazolyl blue tetrazolium bromide salt (Sigma-Aldrich Co, 
Missouri, USA) for 4 hours. The reaction was stopped by the addition of 100 µl of solubilizing solution (12 mM 
HCl, 346 mM SDS and 5% isobutanol); formazan dye was then quantified at a wavelength of 595 nm using a 

Figure 4.  Cigarette and e-cigarette smoke extracts enhance ROS production. (a) MSCs were treated with 
cigarette and e-cigarette smoke extracts for 14 days. ROS generation was evaluated using the DHE assay, 
counterstained with DAPI and observed by fluorescence microscopy. Red indicates presence of ROS. (b) 
Quantification of ROS generation. DHE mean fluorescence intensities of 5 fields from 2 images per condition 
were measured using the Zen 2011 software. Histograms display averages ± SD of mean fluorescence intensities.
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scanning multi-well spectrophotometer (Thermo Scientific Multiskan EX, Thermo Scientific, USA). Proliferation 
results were reported as percentages of control.

Alkaline phosphatase activity.  Alkaline phosphatase (ALP) is an enzyme highly active in bone tissue. ALP 
activity was semi-quantitatively evaluated using the Leukocyte Alkaline Phosphatase Kit (R86, Sigma-Aldrich, 
Missouri, USA). On day 14, cells were washed in phosphate-buffered saline (PBS), fixed and stained for ALP 
activity, according to the manufacturer’s instructions. Purple dye deposits indicate cells with ALP activity.

Alizarin red staining.  On day 21, MSCs were washed in PBS, fixed in a solution of equal volumes of acetone 
and xylene for 30 minutes, and rinsed twice in distilled water. Cells were stained with Alizarin Red S (40 mM) 
for 20 minutes at room temperature, with gentle rocking then washed in distilled water to remove excess dye and 
left to air dry. Dark orange-red patches indicate areas of osteogenic mineralization. Images were captured using a 
Zeiss Axiovert microscope (Primovert HDcam, Carl Zeiss, Germany).

Reactive oxygen species generation.  MSCs were treated with cigarette and e-cigarette extracts +/− 
Dex for 14 days (4 repeated applications of the experimental media). Cells were washed in PBS and incubated 
for 30 minutes at 37 °C with 10 μM dihydroethidium (DHE). DHE reacts with ROS, to produce red fluores-
cent 2-hydroxyethidium63. Cells were counterstained with DAPI. Images were captured and analyzed using a 
laser-scanning confocal microscope (LSM 710, Carl Zeiss, Germany), operated by the Zen 2011 software. 
DHE mean fluorescence intensities of 5 fields from 2 separate images per condition (obtained using fixed 

Figure 5.  Cigarette and e-cigarette smoke extracts inhibit cell-cell communication in MSCs. MSCs were treated 
with cigarette and e-cigarette smoke extracts for 14 days. (a) qRT-PCR of Cx43 and N-cadherin was performed 
on total RNA obtained from control and treated cells. Data were normalized against GAPDH and show fold 
changes (averages ± SEM of 3 independent experiments) relative to the control. (b) Western blots of Cx43 
and N-cadherin were performed on total protein extracts obtained from control and treated cells. GAPDH 
was used as a loading control and total heart lysates as a technical positive control. Blots are representative of 
3 independent experiments. (c) Immunofluorescence staining of Cx43 was performed on control and treated 
MSCs. Arrows indicate gap junction plaques between adjacent cells. Images are representative of at least 
10 fields from 2 independent experiments. (d) MSCs from the control and treated wells were stained with 
calcein-AM and then subjected to 50% photo-bleaching by the 488-nm laser. Fluorescence recovery after photo-
bleaching (FRAP) was monitored for 10 minutes under the 63X objective. White ellipses indicate regions of 
interest (ROI). Images are representative of at least 5 ROIs per condition, from 2 independent experiments.  
(e) Quantification of fluorescence intensity of ROIs relative to reference cells of control and treated cells. Values 
represent the fluorescence intensity (averages ± SD) of each ROI based on several measurements calculated by 
the Zeiss Zen 2011 software. *p < 0.05 and ***p < 0.001.



www.nature.com/scientificreports/

8SCIEntIFIC REportS | 7: 14281  | DOI:10.1038/s41598-017-14634-z

acquisition settings for comparison purposes) were measured using the Zen 2011 software. Histograms display 
averages ± standard deviations (SD) of mean fluorescence intensities.

Molecular analysis.  Gene expression by quantitative PCR.  Total RNA was extracted from smoke 
extract-treated and control MSCs 21 days after culture using the NucleoSpin® RNA II extraction kit 
(Macherey-Nagel, Düren, Germany) as per manufacturer’s instructions. Total extracted RNA was then 
reverse-transcribed with the RevertAid® first strand cDNA synthesis kit (Thermo Scientific), using random 
primers, following the manufacturer’s protocol. cDNA was amplified using an iQ SYBR Green Supermix (BioRad 
Laboratories, Hercules, California, USA) on a BioRad CFX96 real-time PCR system. Cycling conditions were as 
follows: 95 °C for 3 minutes followed by 40 amplification cycles (95 °C denaturation for 3 seconds, annealing for 
30 seconds at the primers’ melting temperature, and extension at 72 °C for 30 seconds) and a final extension cycle 
at 72 °C for 5 minutes. Relative expression of target genes was performed according to the comparative ∆∆Ct 
method using human glyceraldehyde 3-phosphate dehydrogenase (gapdh) as a reference gene for normaliza-
tion. Gene expression levels were assessed for ALP, Collagen 1A1 (Col 1) and runt-related transcription factor 2 
(Runx2). The primers used were as follows: ALP 5′-acaagcactcccacttcatctgga-3′ and 5′-tcacgttgttcctgttcagctcgt-3′; 
Col 1 5′-ttttgtattcaatcactgtcttgcc-3′ and 5′-cagccgcttcacctacagc-3′ and Runx2 5′-tccggaatgcctctgctgttatga-3′ and 
5′-aaggtgaaactcttgcctcgtcca-3′.

Protein expression by western blot.  Total cell lysates were obtained by scraping cells in 2 µl/cm2 of sample buffer 
(126 mM Tris/HCl, 20% glycerol (v/v), 40 mg/ml of sodium dodecyl sulphate [SDS]). Collected cell lysates were 
quantified using the BioRad DC quantification kit according to the manufacturer’s instructions. After heating at 
95 °C for 5 minutes and addition of 0.7 M β-mercaptoethanol and 5 µl of bromophenol blue, 50 µg of proteins were 
loaded on a 10% SDS-PAGE gel and transferred onto a methanol-activated PVDF membrane. Membranes were 
blocked in fat-free milk (5% w/v) and probed with the following antibodies: mouse monoclonal antibody against 
human N-cadherin (33–3900, Invitrogen, California, USA); Rabbit polyclonal antibody against human Cx43 (71-
0700, Life Technologies, California, USA). Membranes were then incubated with the appropriate horseradish per-
oxidase (HRP)-conjugated secondary antibody and proteins were detected by chemoluminescence (Santa Cruz 
technologies, California, USA). Equal loading was assessed using mouse monoclonal HRP-conjugated antibody 
against the housekeeping enzyme GAPDH (Abnova Corporation, Taipei, Taiwan). Images were captured using 
the BioRad Chemidoc MP system.

Protein localization by immunohistochemistry.  MSCs were seeded onto sterile coverslips in 24-well plates and 
treated with cigarette or e-cigarette extracts for 14 days. At the end of the experimental duration, cells were washed 
in PBS, fixed and permeabilized in ice-cold absolute ethanol. Cells were blocked with 3% (v/v) non-immune goat 
serum (NGS) in PBS for one hour at room temperature. Cx43 antibody, diluted in 1% (v/v) NGS in PBS to the 
concentration of 1 μg/ml, was added onto the cells, overnight at 4 °C in a humidified box. Labelling was achieved 
by the addition of Alexa 488-labelled fluorescent goat-anti-rabbit secondary antibody. Cell nuclei were stained 
with 1 μg/ml Hoechst 33324 solution (H3570, Molecular Probes, New York, USA). Finally, ProLong Antifade 
reagent (P36930, Molecular Probes, New York, USA) was used to cover the cells. Images were acquired using the 
LSM 710.

Intercellular communication by fluorescence recovery after photo-bleaching (FRAP).  Functionality 
of gap junction-mediated intercellular communication upon smoke exposure was assessed using the FRAP assay. 
MSCs were seeded onto confocal dishes (MatTek Corporation, Massachusetts, USA) and treated with cigarette or 
e-cigarette extracts. On day 14, cells were labelled with calcein-AM (C3100, Molecular Probes, New York, USA), by 
incubation in 1 μM calcein-AM reconstituted in DMSO, for one hour at 37 °C. Experiments were performed by live 
imaging at 37 °C using the LSM 710 (63x/1.46 Oil Plan-Apochromatic objective). Experimental cells or regions of 
interest (ROI) were chosen based on cell confluence, cell-cell contact (allowing gap junction communication) and 
comparable fluorescence intensity of neighbouring cells. Selected cells were photo-bleached using the 408 nm laser 
at 10% laser power. Fifteen iterations at 10-second intervals achieved a 50% decrease of ROI fluorescence intensity. 
Fluorescence recovery was assessed under the 488 nm laser. Images were captured at 10-second intervals and fluores-
cence intensity of the ROI was quantified over time and normalized to that of control, unbleached, calcein-loaded cells.

Statistical analysis.  Data were reported as mean ± standard deviation and statistical analyses, using 
Student’s t-test, were performed using Microsoft Excel of the Microsoft Office Suite. A p-value of less than 0.05 
was considered significant.
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